Talk 3 Oxford 11/01

R. B. Palmer

- CERN Study
- KEK Study
- FFAG's
- Bunched Phase Rotation
- Emittance Exchange
- Radioactive Ion ν 's

CERN Study

2.2 GeV protons44 MHz spacing50 Hz repetition

Pion Capture with horn

How long will it last?
at 50 Hz c.f. fractions of a Hz
at 1 MW c.f. fractions of a MW
or 4 MW

Cooling with 44 & 88 MHz

	Decay	Retation	Cooling 1	Accel. 1	Cooling 2	Accel. 2
Length (m)	30	30	46	32	112	~ 450
Diameter (cm)	60	60	60	60	30	20
B-field (T)	1.8	1.8	2.0	2.0	2.6	2.6
Frequency (MHz)		44	44	44	88	88 & 176
Cavities gradient (MV/m)		2	2	2	4	4 - 10
Kinetic energy (MeV)		200	200	280	300	2000

CERN vs. US Schemes

```
good: 2 GeV Linac is cheaper than 24 GeV ring bad: space charge in p bunch worse by (24/2)²
so: use many low intensity p bunches, 23 nsec apart
good: shock heating of target less bad: phase rotation limitted to ≈ 3 (4 → 12 nsec). c.f. ≈ 8 (12 → 300/3 nsec)
good: no need to rebunch good: no need to rebunch good: no need of induction linac good: dp/p acceptance larger at low frequency bad: lower accelerating gradient (4 MV/m at 88 MHz vs. 16 MV/m at 200 MHz at same Killpatrick) good: fraction of length with acceleration higher bad: but length still 3 times greater for same cooling bad: and thus more decay loss
```

A good feature of work at low frequency with no rebunching is that it will be needed for a collider. Although in that case the proton energy will need to be high to provide few large p bunches.

Performance estimates now similar, but simulation of CERN system used for this result used idealized fields, and may be optimistic

KEK Study

No induction phase rotation No rebunching No cooling Use sequence of FFAG's

one piza slice of a Scaling FFAG

∆p limited only by aperture typically 1:4
Non-isochonous
rf frequency very low or variable

POP FFAG at KEK

Figure C.2: Top-view of the POP FFAG

1-3 GeV Design

Loss by Decay

Frequency low
Gradients low
Larger Losses to decay

Loss to 0.46

Compare with Study 2

even: Transverse acceptances similar

good: Longitudinal acceptance larger

bad: Capture phase space less good: no losses in rebunching bad: more losses from decay

if Study 2 had no cooling: similar but cooling gives study 2 factor of ≈ 3

	\mathbf{E}_p	μ / \mathbf{p}	acc loss	μ / \mathbf{p}	μ /p/GeV
	GeV	cooled		to ring	%
KEK	50	.3	.46	.14	.27
Study 2	24	.17	.8	.14	.58
Without cooling	24	.06	.8	.048	.2

Injection & extraction Problem

Cost less: more turns, less rf

Cost more: lower frequency

Cost less: single vs. multiple arcs

Cost more: larger circ (rev bends)

Cost more: larger apertures

???

Non-Scaling FFAG

Semi-conventional quadrupole and bend ring with very strong focussing

Momentum acceptance ≈ 1:3
Approximately Isochronous
Can use high frequency SC rf
More e cient and faster acceleration
Limited number of turns

Same injection & extraction prob.

Cost less: more turns, less rf Cost less: single vs. multiple arcs

Cost more: larger apertures

???

Bunched Phase Rotation

Drift Bunch Rotate with high freq. rf

vs. Conventional

Drift
Rotate with induction linac
Bunch

Bunched Phase Rotation

Figure 7: Muon distribution in (E,t)-space along with marginal distributions for 38 vernier (d=0.16) cavities followed by 23 (matched) fixed frequency cavities generated with ICOOL program. $N_b=20$ in buncher part. Plots and numbers quoted are based on 188 000 incident protons.

Distorting Somewhat less e cient for one sign But both signs rotated

Cost less: no induction

performance better: both signs

Bent Solenoid Emittance Exchange

Tracking in ICOOL

- Longitudinal emittance $\times 0.65$
- Transverse xy emittance × 1.36
- 6D emittance \times 0.88
- expected from linear theory: × .68
- **6D** dilution: × 1.3
- Transmission 100 %
- 6D Emittance exchange is demonstrated
- all non linear e ects are included
- exchange only with x, needs second bend
- Matching such exchange into a linear channel di cult
- Try combined cooling and exchange

Balbekov 6D Cooling Ring

Alternate transverse cooling with H2 with emittance exchange in Li wedge

Cools all 6 dimensions

Good cooling in all dimensions More loss than desired

Calculated without Maxwellian fields
Design of bends proving hard
Injection and extraction hard
Uppward spiral an alternative

RFOFO Ring 6D Cooling

R.B. Palmer R. Fernow S. Berg (Oct 01 LBL)

- Longitudinal emittance $\times 0.42$
- Transverse xy emittance $\times (.5)^2 = 0.25$
- 6D emittance \times 0.15
- Transmission 86 %
- Quality Factor ($\epsilon_{in}/\epsilon_{out} \times \text{Trans} = 5.7$

Fully Maxwellian fields
But not too practical
Cooling in 6 D
Good transmissian
Injection & extraction hard
Upward spiral alternative

Radioactive Ion ν Prod.

$$X \rightarrow Y + e + \nu$$

$$\mathbf{E}_{\nu} \approx \mathbf{5} \; \mathbf{MeV}$$

Boost by γ of accelerated Ion eg use 1 TeV ring $\gamma \approx 500$

$$\mathbf{E}_{\nu} \approx \mathbf{2.5} \; \mathbf{GeV}$$

Decays in ring will quench SC magnets.

Need new specially shielded 1 TeV accelerator!

Internal conversion:

$$X+e \rightarrow Y + \nu$$

No change in ion charge Small change in ion momentum slow departure from orbit Use periodic collimators

??????????????????????????????

Conclusion

- Many Good Ideas
- Much work to find if workable
- More work to find costs
- Real hope of performance gains
- Real hope of cost reductions